SCIENTIFIC OPINION

Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health1

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)2, 3

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

The Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked by the European Food Safety Authority (EFSA) to draft guidance on scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. This guidance has been drawn from scientific opinions of the NDA Panel on such health claims. Thus, this guidance document represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims in these areas. It is not intended that the document should include an exhaustive list of beneficial effects and studies/outcome measures which are acceptable. Rather, it presents examples drawn from evaluations already carried out in order to illustrate the approach of the NDA Panel, as well as some examples which are currently under consideration within ongoing evaluations. A draft of this guidance document, endorsed by the NDA Panel on 25 March 2011, was released for public consultation from 26 April 2011 to 31 August 2011.

KEY WORDS

Health claims, scientific requirements, antioxidants, oxidative damage, cardiovascular health.

1 On request from EFSA, Question No EFSA-Q-2010-01182, adopted on 24 November 2011.
2 Panel members: Carlo Agostoni, Jean-Louis Bresson, Susan Fairweather-Tait, Albert Flynn, Ines Golly, Hannu Korhonen, Pagona Lagiou, Martinus Lovik, Rosangela Marchelli, Ambroise Martin, Bevan Moseley, Monika Neuhäuser-Berthold, Hildegard Przyrembel, Seppo Salminen, Yolanda Sanz, Sean (J.J.) Strain, Stephan Strobel, Inge Tetens, Daniel Tomé, Hendrik van Loveren and Hans Verhagen. Correspondence: nda@efsa.europa.eu

TABLE OF CONTENTS

Summary .. 1
Table of contents .. 2
Background as provided by EFSA .. 3
Terms of reference as provided by EFSA ... 3
Assessment ... 4
1. Introduction ... 4
2. General considerations .. 5
 2.1. Beneficial physiological effects ... 5
 2.2. Studies/outcome measures appropriate for substantiation of claims ... 5
3. Antioxidant properties, antioxidant status, antioxidant defence ... 6
 3.1. Claims on antioxidant properties of foods ... 6
 3.2. Claims on antioxidant status and antioxidant defence ... 6
 3.3. Claims on the protection of cells from premature ageing ... 7
4. Oxidative damage, including photo-oxidative (UV-induced) damage .. 7
 4.1. Claims on the protection of body cells and molecules (i.e. DNA, proteins and lipids) from oxidative damage, including photo-oxidative (UV-induced) damage 7
 4.1.1. Oxidative damage to proteins ... 8
 4.1.2. Oxidative damage to lipids .. 8
 4.1.3. Oxidative damage to DNA .. 8
5. Cardiovascular health ... 9
 5.1. Claims related to changes in the blood lipid profile ... 9
 5.1.1. Claims related to blood LDL-cholesterol concentration ... 9
 5.1.2. Claims related to blood HDL-cholesterol concentration ... 10
 5.1.3. Claims related to blood concentration of triglycerides ... 10
 5.2. Claims on the reduction of blood pressure ... 10
 5.3. Claims on endothelial function .. 11
 5.4. Claims on reduced platelet aggregation ... 11
 5.5. Claims on homocysteine .. 11
 5.6. Disease risk reduction claims ... 11
Conclusions .. 12
Glossary and Abbreviations ... 13
BACKGROUND AS PROVIDED BY EFSA

Regulation (EC) No 1924/2006\(^4\) harmonises the provisions that relate to nutrition and health claims, and establishes rules governing the Community authorisation of health claims made on foods. According to the Regulation, health claims should only be authorised for use in the Community after a scientific assessment of the highest possible standard has been carried out by EFSA.

EFSA and its NDA Panel have been engaging in consultation with stakeholders, and have published guidance on scientific substantiation of health claims, since 2007\(^5\). Most recently, a briefing document on scientific evaluation of health claims was published for consultation in April 2010, followed by a technical meeting with experts from the food industry, Member States and the European Commission in Parma, in June 2010\(^6\).

Based on experiences gained with the evaluation of health claims, and to further assist applicants in preparing and submitting their applications for the authorisation of health claims, the NDA Panel is asked to develop guidance documents on the scientific requirements for the substantiation of health claims in selected areas, in addition to the guidance for the scientific substantiation of health claims related to gut and immune function (EFSA-Q-2010-01139).

TERMS OF REFERENCE AS PROVIDED BY EFSA

The NDA Panel is requested by EFSA to develop guidance documents on the scientific requirements for health claims in the following areas:

- Post-prandial blood glucose responses/blood glucose control
- Weight management, energy intake and satiety
- Protection against oxidative damage
- Cardiovascular health
- Bone, joints, and oral health
- Neurological and psychological functions
- Physical performance

Specific issues to be addressed in these guidance documents include:

- which claimed effects are considered to be beneficial physiological effects?
- which studies/outcome measures are appropriate for the substantiation of function claims and disease risk reduction claims?

Each guidance document should be subject to public consultation, and may be followed up as appropriate by scientific meetings with experts in the field.

Before the adoption of each guidance document by the NDA Panel the draft guidance shall be revised, taking into account the comments received during the public consultation. A report on the outcome of the public consultation for each guidance document shall be published. All guidance documents should be finalised by July 2012.

ASSESSMENT

1. Introduction

To assist applicants in preparing and submitting their applications for the authorisation of health claims, EFSA and in particular its Scientific Panel on Dietetic Products, Nutrition and Allergies (NDA) has ongoing consultations with stakeholders, and has published guidance on the scientific substantiation of health claims since 2007. In April 2010, a draft briefing document on the scientific evaluation of health claims was published for consultation and was followed by a technical meeting with experts from the food industry, Member States and the European Commission in Parma, in June 2010. The draft briefing document has been transformed into a Panel output, taking into account the questions/comments received. This document constitutes the general guidance for stakeholders on the evaluation of Article 13.1, 13.5 and 14 health claims, and outlines the approach of the NDA Panel to the evaluation of health claims in general. In response to requests from industry, EFSA is engaged in further consultation with stakeholders, and is developing additional guidance on specific types of claims.

The present guidance, prepared by the NDA Panel, on the scientific requirements for the substantiation of health claims related to antioxidants, oxidative damage and cardiovascular health was, prior to its finalisation, endorsed by the NDA Panel on 25 March 2011 for public consultation, which was open from 26 April to 31 August 2011. All the public comments received that related to the remit of EFSA were assessed, and the guidance has been revised taking into consideration relevant comments. The comments received and a report on the outcome of the public consultation are published on the EFSA website.

The guidance document focuses on two key issues regarding the substantiation of health claims related to antioxidants, oxidative damage and cardiovascular health:

- claimed effects which are considered to be beneficial physiological effects.
- studies/outcome measures which are considered to be appropriate for the substantiation of health claims.

Issues which are related to substantiation and which are common to health claims in general (e.g. characterisation of the food/constituent) are addressed in the general guidance for stakeholders on the evaluation of Article 13.1, 13.5 and 14 health claims.

This document has been drawn from scientific opinions of the NDA Panel on health claims related to antioxidants, oxidative damage and cardiovascular health. Thus, it represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims in these areas. The document should be read in conjunction with the general guidance for stakeholders on the evaluation of Article 13.1, 13.5 and 14 health claims.

It is not intended that the document should include an exhaustive list of beneficial effects and studies/outcome measures which are acceptable. Rather, it presents examples drawn from evaluations already carried out in order to illustrate the approach of the Panel, as well as some examples which are currently under consideration within ongoing evaluations. Given that health claims are often technically complex and unique, additional health relationships and outcome measures for claimed
effects need to be considered in the context of a specific application. This guidance document may be updated in the future in light of additional experience gained with the evaluation of health claims.

2. General considerations

2.1. Beneficial physiological effects

According to Regulation (EC) No 1924/2006, the use of health claims shall only be permitted if the food/constituent, for which the claim is made, has been shown to have a beneficial physiological effect. In assessing each claim, the NDA Panel makes a scientific judgement on whether the claimed effect is considered to be a beneficial physiological effect in the context of the specific claim, as described in the information provided and taking into account the population group for whom the claim is intended. For function claims, a beneficial effect may relate to the maintenance or improvement of a function.

For reduction of disease risk claims, ‘beneficial’ refers to whether the claimed effect relates to the reduction (or beneficial alteration) of a risk factor for the development of a human disease (and not to the reduction of the risk of disease). A risk factor is a factor associated with the risk of a disease that may serve as a predictor of development of that disease. Whether or not the alteration of a factor is considered to be beneficial in the context of a reduction of disease risk claim depends on the extent to which it is established that:

- The factor is an independent predictor of disease risk (such a predictor may be established from intervention and/or observational studies);
- The relationship of the factor to the development of the disease is biologically plausible.

Except for well established risk factors (e.g. LDL-cholesterol concentration, blood pressure), the extent to which the reduction of a factor is beneficial in the context of a reduction of disease risk claim needs to be considered on a case-by-case basis.

The NDA Panel considers that the population group for which health claims are intended is the general (healthy) population or specific subgroups thereof, for example, elderly people, physically active subjects, or pregnant women. In its evaluation, the NDA Panel considers that where a health claim relates to a function/effect which may be associated with a disease, subjects with the disease are not the target population for the claim, for example, patients with myocardial infarction. Applications for claims which specify target groups other than the general (healthy) population are the subject of ongoing discussions with the Commission and Member States with regard to their admissibility.

The NDA Panel also considers whether the claimed effect is sufficiently defined to establish that the studies identified for substantiation of the claim were performed with (an) appropriate outcome measure(s) of that claimed effect. Reference to general, non-specific benefits of the nutrient or food for overall good health or health-related well-being may only be made if accompanied by a specific health claim.

2.2. Studies/outcome measures appropriate for substantiation of claims

As human studies are central for the substantiation of health claims, this document focuses in particular on such studies. In considering whether the studies provided are pertinent (i.e. studies from which conclusions can be drawn for the scientific substantiation of the claim), the NDA Panel addresses a number of questions, including:
Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health

- Whether the studies have been carried out with the food/constituent for which the claim is made. This requirement means that there should be sufficient definition of the food/constituent for which the claim is made, and of the food/constituent which has been investigated in the studies which have been provided for substantiation of the claim. The evaluation also considers how the conditions under which the human studies were performed relate to the conditions of use (e.g. quantity and pattern of consumption of the food/constituent) proposed for the claim.

- Whether the design and quality of the studies allow conclusions to be drawn for the scientific substantiation of the claim. The evaluation takes into account the hierarchy of evidence as described in the scientific and technical guidance of the NDA Panel, for example, intervention studies generally provide stronger evidence than observational studies. Intervention studies should be appropriately conducted so as to minimise bias. In observational studies adequate control for factors other than the food/constituent known to have an impact on the claimed effect is important. Each health claim is assessed separately and there is no pre-established formula as to how many or what type of studies are needed to substantiate a claim. In this regard, the reproducibility of the effect of the food/constituent as indicated by consistency between studies is an important consideration.

- Whether the studies have been carried out in a study group representative of the population group for which the claim is intended. Can the results obtained in the studied population be extrapolated to the target population? For studies in groups (e.g. subjects with a disease) other than the target group for a claim (e.g. the general population), the NDA Panel considers on a case-by-case basis the extent to which it is established that extrapolation from the study group to the target group is biologically plausible.

- Whether the studies used (an) appropriate outcome measure(s) of the claimed effect. For this, the NDA Panel considers what is generally accepted in the relevant research fields (e.g. guidelines published by scientific societies based on rigorous methodological approaches), and consults experts from various disciplines, as appropriate.

3. Antioxidant properties, antioxidant status, antioxidant defence

3.1. Claims on antioxidant properties of foods

Claims on the antioxidant content/properties/activity of foods have been proposed. The references provided for the scientific substantiation of these claims included in vitro studies on the capacity of foods/constituents to scavenge free radicals. Claims made on the antioxidant capacity/content or properties of foods/constituents based on their capability of scavenging free radicals in vitro refer to a property of the foods/constituents measured in model systems, and it is not established that this capability exerts a beneficial physiological effect in humans as required by Regulation (EC) No 1924/2006.

3.2. Claims on antioxidant status and antioxidant defence

Claims referring to antioxidant status and antioxidant defence have been proposed. The references provided for the scientific substantiation of these claims included in vivo human studies which assessed changes in the overall antioxidant capacity of plasma using methods such as the total reactive antioxidant potential (TRAP), the trolox-equivalent antioxidant capacity (TEAC), the ferric

reducing antioxidant potential (FRAP), the oxygen radical absorbance capacity (ORAC) or the ferrous oxidation-xylenol orange (FOX) assays. It is not established that changes in the overall antioxidant capacity of plasma exert a beneficial physiological effect in humans as required by Regulation (EC) No 1924/2006.

For claims related to the “antioxidant defence system”, references assessing the effects of foods/constituents on enzymes and endogenous compounds (e.g. glutathione) that are part of the body’s antioxidant network have been provided.

Some vitamins and essential minerals have a role in the function of enzymes which belong to the human antioxidant network that protects cells and molecules from oxidative damage. Their role in the human antioxidant network has been established based on a large body of scientific evidence. In the context of an adequate supply of these vitamins and essential minerals, a specific induction of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and haemoxigenase, or limiting the decrease in glutathione, is considered a beneficial physiological effect only if such changes provide (additional) protection of cells and molecules from oxidative damage, which should be demonstrated in vivo in humans. Therefore, induction of antioxidant enzymes cannot be used alone as evidence for claims related to the “antioxidant defence system” for non-essential food constituents.

3.3. Claims on the protection of cells from premature ageing

Claims referring to the “protection of cells from premature ageing” or to “healthy aging” have been proposed in relation to antioxidant properties of foods/constituents. The references provided for the scientific substantiation of these claims included a variety of in vitro and in vivo animal and human studies assessing the effects of foods/constituents on a variety of outcomes, including the antioxidant capacity of foods; changes in antioxidant status; oxidative damage to proteins; lipids and DNA, non-oxidative DNA damage; neoplastic degeneration of cells, etc. For these claims, no definition has been provided of “premature aging” or of “healthy aging” in relation to the antioxidant properties of foods, and therefore the claimed effect is considered to be general and non-specific, and thus does not comply with the criteria laid down in Regulation (EC) No 1924/2006.

4. Oxidative damage, including photo-oxidative (UV-induced) damage

4.1. Claims on the protection of body cells and molecules (i.e. DNA, proteins and lipids) from oxidative damage, including photo-oxidative (UV-induced) damage

The protection of body cells and molecules such as DNA, proteins and lipids from oxidative damage, including photo-oxidative (UV-induced) damage, may be a beneficial physiological effect, assuming that any significant oxidative modification of the target molecule is potentially harmful. In this specific context, an appropriate method of assessment should be able to determine accurately and specifically the oxidative modification of the target molecule in vivo. The scientific substantiation of health claims on the protection of molecules from oxidative damage requires at least one appropriate marker of oxidative modification of the target molecule assessed in human studies, preferably in combination with other marker(s) as defined in sections 4.1.1 to 4.1.3. However, these other markers of oxidative damage to molecules cannot be used alone for substantiation as they have some limitations, either because they represent a result of two processes (oxidative damage and repair), or because they suffer from technical limitations (interferences from other unrelated processes or substances), or both. A marker cannot be accepted for substantiation when these limitations are considered to be severe. Different markers of oxidative damage to molecules should preferably be determined in the same study, but their determination in similar studies could be acceptable on a case-by-case basis.
The antioxidant properties of foods (measured in vitro), and changes in the overall antioxidant capacity of plasma (measured in vivo as, for example, TRAP, TEAC, FRAP, ORAC or FOX), do not predict a role of the food/constituent in the protection of body cells and molecules such as DNA, proteins and lipids from oxidative damage in vivo, and therefore are not suitable outcome measures for the scientific substantiation of the claimed effect.

4.1.1. Oxidative damage to proteins

Direct measurements of oxidative damage to proteins in vivo (e.g. measurement of oxidative changes of amino acids in proteins) could be obtained by means of HPLC-MS and other methods, as long as identification and separation of such molecules in plasma from other substances is successfully achieved (e.g. from protein tyrosine nitration products). Measures of protein oxidation by-products (e.g. protein carbonyls) using conventional assays (e.g. colorimetric procedure which involves dinitrophenylhydrazine (DNPH) derivatisation of carbonyl groups) or ELISA methods (either directly or after DNPH derivatisation) are usually susceptible to interferences by molecules other than proteins, and could only be used in combination with at least one direct marker of oxidative damage to proteins in vivo if assessed directly in blood or target tissue (e.g. skin).

4.1.2. Oxidative damage to lipids

Direct measurements of oxidative damage to lipids (i.e. lipid peroxidation) could be obtained in vivo by measuring changes in F$_2$-α-isoprostanes in 24-h urine samples, which is a better matrix than plasma for this measurement, using gas-chromatography techniques with various detection modes, of which mass spectrometry is preferred. F$_2$-α-isoprostanes can also be measured using immunoassays. However, lack of specificity owing to possible cross reactions with other prostanoids needs to be taken into account.

Measurements of oxidative damage to lipids (i.e. lipid peroxidation) could also be obtained in vivo by measuring oxidised LDL particles in blood using immunological methods (i.e. antibodies) with appropriate specificity. Phosphatidylcholine hydroperoxides (PCOOH) measured in blood or tissue by high-performance liquid chromatography (HPLC) is also an acceptable marker of lipid peroxidation.

Other methods proposed are not reliable in vivo markers of lipid peroxidation (e.g. thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), lipid peroxides, HDL-associated paraoxonases, conjugated dienes, breath hydrocarbons, auto-antibodies against LDL particles, and ex vivo LDL resistance to oxidation). However, concentrations of MDA or lipid peroxides in blood or tissue could be used as supportive evidence (i.e. in addition to measurements of F$_2$-α-isoprostanes and in vivo LDL oxidation) if appropriate techniques are used for analysis (e.g. HPLC).

4.1.3. Oxidative damage to DNA

Direct measurements of oxidative damage to DNA may be obtained in vivo by using modifications of the comet assay, which allow the detection of oxidised DNA bases (e.g. use of endonuclease III to detect oxidised pyrimidines). Although the assay provides no absolute values, it allows quantitative comparison with an appropriate control. This assay directly reflects DNA oxidative damage within cells when assessed, for example, in circulating lymphocytes.

Measurements of DNA damage using the traditional comet assay (single-cell microgel electrophoresis, SCGE) detect DNA strand breaks by the appearance of tailing, and are not specific for oxidative damage. Other variants of the comet assay determine resistance against oxidative modification using ex vivo pro-oxidant challenges. Neither of these measurements is appropriate for assessing in vivo oxidative damage to DNA.
Analyses of 8-hydroxy-2-deoxy-guanosin (8-OHdG) in blood (e.g. lymphocytes), tissue (e.g. skin) and urine have been used to assess oxidative damage to DNA. Free 8-OHdG results from oxidative damage and excision-repair; it may also result from oxidation of free bases or nucleotides, from oxidation of other nucleic acids, and from artefacts during sample work up. Urinary 8-OHdG does not directly reflect DNA oxidation within cells, but could be used in combination with direct measurements of oxidative damage to DNA if appropriate techniques are used for analysis (e.g. HPLC).

5. Cardiovascular health

Claims referring to cardiovascular health in general need to be accompanied by a specific claim (e.g. claims addressed in sections 5.1 to 5.5 of this guidance).

For a health claim on the normal function of the heart, evidence from human studies on specific outcomes (e.g. coronary events) can be used for substantiation.

5.1. Claims related to changes in the blood lipid profile

The scientific substantiation of health claims related to changes in the blood lipid profile requires identification of the particular markers which should be considered for the evaluation (e.g. LDL-cholesterol, HDL-cholesterol and triglycerides).

5.1.1. Claims related to blood LDL-cholesterol concentration

Maintenance of normal LDL-cholesterol concentration is a beneficial physiological effect. The scientific evidence for the substantiation of health claims on the maintenance of normal blood cholesterol concentration can be obtained from human intervention studies showing a short-term (e.g. three to four week) reduction in LDL-cholesterol concentration as compared to an appropriate food/constituent which is neutral with respect to the claimed effect, or exceptionally no treatment (e.g. control group on usual diet). In this context, also a reduction in LDL-cholesterol concentration within the normal range is considered a beneficial physiological effect. Evidence for a sustained effect with continuous consumption of the food/constituent over longer periods of time (e.g. eight weeks) should also be provided.

Claims for a beneficial effect of the absence (or reduced content) of a food constituent in a food or category of food on LDL-cholesterol concentration have been proposed. Substantiation may be based on evidence for an independent role of the food constituent in increasing LDL-cholesterol concentration. For example, for claims on a reduced content of saturated fatty acids (SFAs) in relation to blood LDL-cholesterol concentration, SFAs in mixed diets have been shown to increase blood LDL-cholesterol concentration when compared to carbohydrates which have a neutral effect on LDL-cholesterol concentration, and therefore SFAs in mixed diets have an independent role in increasing LDL-cholesterol concentration.

Claims for a beneficial effect of a food constituent when used in replacement of a food constituent with an independent role in increasing LDL-cholesterol concentration have also been proposed. Substantiation may be based on evidence for an independent role of the replaced food constituent in increasing LDL-cholesterol concentration, together with evidence for the lack of an effect or a reduced effect of the food constituent which is used for replacement (e.g. claims for unsaturated fats and reduced LDL-cholesterol concentration when replacing saturated fats).

With respect to the study population, results from studies conducted in hypercholesterolaemic subjects treated with lifestyle measures only (e.g. diet) could be used for the scientific substantiation of these claims. However, the rationale for extrapolation of results obtained in hypercholesterolaemic
subjects under pharmacological treatment with cholesterol-lowering medications (e.g. statins) to the target population for the claim should be provided, and will be considered on a case-by-case basis (e.g. evidence for a lack of interaction between the food and the medications used on the claimed effect).

5.1.2. Claims related to blood HDL-cholesterol concentration

Maintenance of normal HDL-cholesterol concentration is a beneficial physiological effect as long as LDL-cholesterol concentration is not increased.

The scientific evidence for the substantiation of health claims on the maintenance of normal HDL-cholesterol concentration can be obtained from human intervention studies showing a short-term (e.g. three to four week) increase in fasting HDL-cholesterol concentration (without a concomitant increase in LDL-cholesterol concentration) as compared to an appropriate food/constituent which is neutral with respect to the claimed effect, or exceptionally to no treatment (e.g. control group on usual diet). In this context, also an increase in HDL-cholesterol concentration within the normal range is considered a beneficial physiological effect. Evidence for a sustained effect with continuous consumption of the food/constituent over longer periods of time (e.g. eight weeks) should also be provided.

5.1.3. Claims related to blood concentration of triglycerides

Maintenance of normal blood concentration of triglycerides may be a beneficial physiological effect. The scientific evidence for the substantiation of health claims on the maintenance of normal blood concentration of triglycerides can be obtained from human intervention studies showing a short-term (e.g. three to four week) reduction in fasting triglyceride concentration as compared to an appropriate food/constituent which is neutral with respect to the claimed effect, or exceptionally to no treatment (e.g. control group on usual diet). In this context, also a reduction in fasting triglyceride concentration within the normal range may be considered a beneficial physiological effect. Evidence for a sustained effect with continuous consumption of the food/constituent over longer periods of time (e.g. eight weeks) should also be provided.

With respect to the study population, results from studies conducted in hypertriglyceridaemic subjects treated with lifestyle measures only (e.g. diet) could be used for the scientific substantiation of these claims. However, the rationale for extrapolation of results obtained in hypertriglyceridaemic subjects under treatment with “triglyceride-lowering” medications (e.g. fibrates) to the target population for the claim should be provided, and will be considered on a case-by-case basis (e.g. evidence for a lack of interaction between the food and the medications used on the claimed effect).

5.2. Claims on the reduction of blood pressure

Maintenance of normal blood pressure is a beneficial physiological effect. The scientific evidence for the substantiation of health claims on the maintenance of normal blood pressure can be obtained from human intervention studies showing a short-term (e.g. three to four week) reduction in systolic blood pressure, or a reduction in diastolic blood pressure if accompanied by a reduction in systolic blood pressure as compared to a food/constituent which is neutral with respect to the claimed effect, or exceptionally to no treatment (e.g. control group on usual diet). In this context, also reductions in blood pressure within the normal range are considered beneficial physiological effects. Blood pressure should be measured using well-accepted protocols.

With respect to the study population, results from studies conducted in hypertensive subjects treated with lifestyle measures only (e.g. diet) could be used for the scientific substantiation of these claims.
However, the rationale for extrapolation of results obtained in hypertensive subjects under treatment with blood pressure-lowering medications (e.g. ACE-inhibitors, blockers of beta adrenergic receptors, calcium channel blockers and diuretics) to the target population for the claim should be provided, and will be considered on a case-by-case basis (e.g. evidence for a lack of interaction between the food and the medications used on the claimed effect).

5.3. Claims on endothelial function
Endothelial function per se is not sufficiently defined for a scientific evaluation, because endothelium-derived active factors play a role in the maintenance of several functions of the vascular system. These include vasomotion, smooth muscle proliferation, thrombosis, inflammation, coagulation, fibrinolysis and oxidation, which can be assessed by indirect methods. Some of the claims referred to the improvement of specific endothelial functions (e.g. endothelium-dependent vasodilation), which can be assessed in vivo using well established methods (e.g. the flow-mediated dilation technique). An improvement of specific endothelial functions (e.g. endothelium-dependent vasodilation) during sustained exposure to the food/constituent (e.g. four weeks) may be considered a beneficial physiological effect.

5.4. Claims on reduced platelet aggregation
Platelet hyperactivity and hypercoagulability states are more commonly observed in subjects with cardiovascular (CV) risk factors. Healthy subjects at very low risk of CV disease normally have non-activated circulating platelets. Decreasing platelet aggregation in subjects with platelet activation during sustained exposure to the food/constituent (e.g. four weeks) would be a beneficial physiological effect.

5.5. Claims on homocysteine
Maintenance of normal homocysteine metabolism is a beneficial physiological effect. It is well established that homocysteine metabolism is closely linked with both folate metabolism and one-carbon metabolism.

Evidence for the scientific substantiation of this claim may come from the well established role of a food in contributing to the remethylation or degradation of homocysteine (e.g. some vitamins), or can be obtained from human intervention studies showing a short-term reduction of homocysteine concentration as compared to an appropriate food/constituent which is neutral with respect to the claimed effect, or exceptionally to no treatment (e.g. control group on usual diet). Evidence for a sustained effect with continuous consumption of the food/constituent over longer periods of time (e.g. eight weeks) should also be provided.

5.6. Disease risk reduction claims
It is well established that elevated blood LDL-cholesterol concentration is independently associated with an increased risk of coronary heart disease (CHD), and that reducing blood LDL-cholesterol concentration (by dietary modification and drugs) would generally reduce the risk of development of CHD. It is also well established that elevated (systolic) blood pressure is independently associated with an increased risk of CHD and stroke, and that reducing (systolic) blood pressure (by dietary modification and drugs) would generally reduce the risk of development of CHD and stroke. Reduction in blood LDL-cholesterol concentration, therefore, is considered beneficial in the context of a reduction of disease risk claim for CHD, and reduction in (systolic) blood pressure is considered beneficial in the context of a reduction of disease risk claim for CHD and stroke.
Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health

For other proposed risk factors, the evidence may not be as strong. There is some evidence, for example, that low blood HDL-cholesterol concentration, elevated blood concentration of triglycerides, or elevated blood homocysteine concentration is associated with an increased risk of CHD. Reduction in blood concentration of triglycerides, reduction in blood homocysteine concentration, or an increase in blood HDL-cholesterol concentration, have been associated with a decreased incidence of CHD following certain dietary interventions in some human intervention studies. However, changes in any of these factors (by dietary modification or drugs) have not generally been shown to reduce the risk of CHD. Therefore, human studies on the risk of CHD are required for the substantiation of these claims in order to validate the association between these variables and the risk of disease in the context of a particular nutritional intervention.

CONCLUSIONS

The guidance document focuses on two key issues regarding the substantiation of health claims related to antioxidants, oxidative damage and cardiovascular health:

- claimed effects which are considered to be beneficial physiological effects.
- studies/outcome measures which are considered to be appropriate for the substantiation of health claims.

The document has been drawn from scientific opinions of the NDA Panel on health claims related to antioxidants, oxidative damage and cardiovascular health. Thus, it represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims in these areas.
GLOSSARY AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-OHdG</td>
<td>8-hydroxy-2-deoxy-Guanosin</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CV</td>
<td>Cardiovascular</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNPH</td>
<td>Dinitrophenylhydrazine</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FOX</td>
<td>Ferrous oxidation-xylenol orange</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant potential</td>
</tr>
<tr>
<td>GSH-Px</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>PCOOH</td>
<td>Phosphatidylcholine hydroperoxides</td>
</tr>
<tr>
<td>SCGE</td>
<td>Single-cell microgel electrophoresis</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox-equivalent antioxidant capacity</td>
</tr>
<tr>
<td>TRAP</td>
<td>Total reactive antioxidant potential</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>